Excitation energy transfer and charge separation in photosystem II membranes revisited.
نویسندگان
چکیده
We have performed time-resolved fluorescence measurements on photosystem II (PSII) containing membranes (BBY particles) from spinach with open reaction centers. The decay kinetics can be fitted with two main decay components with an average decay time of 150 ps. Comparison with recent kinetic exciton annihilation data on the major light-harvesting complex of PSII (LHCII) suggests that excitation diffusion within the antenna contributes significantly to the overall charge separation time in PSII, which disagrees with previously proposed trap-limited models. To establish to which extent excitation diffusion contributes to the overall charge separation time, we propose a simple coarse-grained method, based on the supramolecular organization of PSII and LHCII in grana membranes, to model the energy migration and charge separation processes in PSII simultaneously in a transparent way. All simulations have in common that the charge separation is fast and nearly irreversible, corresponding to a significant drop in free energy upon primary charge separation, and that in PSII membranes energy migration imposes a larger kinetic barrier for the overall process than primary charge separation.
منابع مشابه
A structure-based model of energy transfer reveals the principles of light harvesting in photosystem II supercomplexes.
Photosystem II (PSII) initiates photosynthesis in plants through the absorption of light and subsequent conversion of excitation energy to chemical energy via charge separation. The pigment binding proteins associated with PSII assemble in the grana membrane into PSII supercomplexes and surrounding light harvesting complex II trimers. To understand the high efficiency of light harvesting in PSI...
متن کاملCharge separation in the reaction center of photosystem II studied as a function of temperature.
In photosystem II of green plants the key photosynthetic reaction consists of the transfer of an electron from the primary donor called P680 to a nearby pheophytin molecule. We analyzed the temperature dependence of this reaction by subpicosecond transient absorption spectroscopy over the temperature range 20-240 K using isolated photosystem II reaction centers from spinach. After excitation in...
متن کاملAntenna size dependence of fluorescence decay in the core antenna of photosystem I: estimates of charge separation and energy transfer rates.
We have examined the photophysics of energy migration and trapping in photosystem I by investigating the spectral and temporal properties of the fluorescence from the core antenna chlorophylls as a function of the antenna size. Time-correlated single photon counting was used to determine the fluorescence lifetimes in the isolated P700 chlorophyll a-protein complex and in a mutant of Chlamydomon...
متن کاملRelationship between excitation energy transfer, trapping, and antenna size in photosystem II.
We present a systematic study of the effect of antenna size on energy transfer and trapping in photosystem II. Time-resolved fluorescence experiments have been used to probe a range of particles isolated from both higher plants and the cyanobacterium Synechocystis 6803. The isolated reaction center dynamics are represented by a quasi-phenomenological model that fits the extensive time-resolved ...
متن کاملQuantum Coherence in Photosynthesis for Efficient Solar Energy Conversion
The crucial step in the conversion of solar to chemical energy in Photosynthesis takes place in the reaction center where the absorbed excitation energy is converted into a stable charge separated state by ultrafast electron transfer events. However, the fundamental mechanism responsible for the near unity quantum efficiency of this process is unknown. Here we elucidate the role of coherence in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 91 10 شماره
صفحات -
تاریخ انتشار 2006